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Abstract. The exact solutions for the energy spectrum of the XX model with a periodic coupling and an
external transverse magnetic field h are obtained. The diagonalization procedure is discussed, and analytical
and numerical solutions are given. Using the solutions for period-two coupling, the free energy, entropy,
and specific heat are calculated as functions of temperature and applied transverse external magnetic field.
Their expressions show that below a particular value v and above a value u of the magnetic field |h|, the
entropy and the specific heat vanish exponentially in the low temperature limit.

PACS. 05.70.Fh Phase transitions: general studies – 05.70.Jk Critical point phenomena – 75.10.Pq Spin
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1 Introduction

The physics of one dimensional chains provide a good
example for the rigourous study of some properties of
quantum magnetic systems. They are known to be useful
for analysing many-body problems. Recently, real, model
quasi-1D systems of atoms have become the object of ex-
periments. From a experimental point of view, there are
many quasi one dimensional compounds (such as the or-
ganic series (BCPTTF)2X with (X = AsF6, PF6), the
cuprate CuGeO3, or the (VO)2P2O7 compounds, as well
as other series as the TTFMS4C4(CF3)4 with M = Cu,
Au, Pt, or Ni [1–7]). These are properly described as
Peierls spin-chains.

The experimental discovery of quasi-crystals [8,9] has
stimulated intense activity in the study of the periodic
and aperiodic chains, with the aim of understanding their
physical properties [10].

Recently, new, unusual properties in low-dimensional
magnetic materials have been found [11–13] that can be
explained in terms of many-body behaviour. It seems to be
responsible for the occurrence of magnetization plateaus
as a function of external magnetic fields [14,15].

The procedure for the study of this type of structures
was initiated by Leib et al. [16], by using the well-known
Jordan-Wigner transformation [17], and assuming that
the chain is finite with set boundary conditions.

One of the most important systems is the 1D
XY model (S = 1/2), introduced by Leib et al. [16]. It
plays an important role in the description of many-body
problems since it can be solved exactly.

a e-mail: julio@unizar.es

Two early examples of studies of ground state proper-
ties (e.g. susceptibility) for the XY model with alternating
interaction are those by Perk et al. [18], and Taylor and
Müller [19].

Quantum critical phenomena in random XY
chains have been studied using renormalization group
methods [20], and by numerical methods [21,22].

Recently, Derzhko et al. [23–25] have described the
thermodynamical behaviour and properties of the ground
state of periodic non-uniform XY chains in a transverse
field. Also, thermodynamic properties in one dimensional
superlattices have been treated by de Lima et al. [26–28].
An excellent review is provided in reference [29].

As mentioned previously, systems of this type are inter-
esting due to being strongly affected by quantum fluctua-
tions, and by their apparent simplicity. For example, low
dimensional electronic materials are known to be very sen-
sitive to structural distortions that are driven by electron-
phonon interactions. These break the symmetry of the
original ground state, which results in a new lower en-
ergy state where the electrons and ions are shifted from
their original positions in a regular manner. This creates
a periodic variation of the charge density that is called
a charge density wave. This is the well-know Peierls in-
stability which opens a gap at the Fermi surface of the
1D electronic chain, transforming a metal into a semicon-
ductor. A similar effect is expected for 1D spin chains,
which are unstable against lattice vibrations.

The problem considered here is a homogeneous chain
where the structural distortions of the lattice are taken
into account through a periodic coupling between a given
site and its neighbouring sites. An external transverse
magnetic field h is also applied. This permits us to study
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the diverse phases of the system. Thus, the Hamiltonian
is,

H = −
N∑

i=1

Ji,i+1(Sx
i Sx

i+1 + Sy
i Sy

i+1) − h

N∑

i=1

Sz
i , (1)

where

Ji,i+1 = Ji+a,i+a+1 = u + v cos
(

2πm

N
i

)
, (2)

and the quantum spin operators are Sc
i = (1/2)σc

i
(where σc

i are the Pauli matrices at the site i), and
a = N/m is an integer.

This work is divided in four sections. In Section 2
we begin with the Hamiltonian (1). The Jordan-Wigner
transformation is applied, then the Hamiltonian is diago-
nalized with a superposition between creation operators.
The same superposition is used between the correspond-
ing destruction operators. This superposition is possible
due to the Hamiltonian being isotropic, thus preserving
the total transverse spin Sz =

∑
i Sz

i .
In Section 3, analytical results for the energy bands

and gaps are given for the integer values a = 2 and
3. Graphs are provided that show numerical results for
higher values of a. The degeneration of the bands into
single levels is discussed.

In Section 4, thermodynamic quantities — free energy,
entropy and specific heat — and their behaviour are dis-
cussed. The free energy per site is calculated as a function
of temperature. The other thermodynamic properties are
subsequently derived from this. Graphs showing the free
energy and entropy are given.

An interesting result is found by taking the low tem-
perature limit. It is shown that the entropy and the spe-
cific heat possess local maxima at |h| = v and |h| = u.
They vanish exponentially with temperature for |h| < v
and |h| > u. Both functions at the maxima vary as a
square root of temperature, while in between they are pro-
portional to temperature.

2 The model

The simplest solvable model (see for example Ref. [30])
is the isotropic spin 1/2 XY model. This model is based
on a one dimensional lattice with a uniform interaction
strength J between nearest neighbour sites, and uses pe-
riodic boundary conditions. As explained in the introduc-
tion, a correction to this Hamiltonian is provided by in-
troducing a periodic strength, which simulates a vibration
at the sites. Hence, the Hamiltonian from (1, 2) is

H = −
N∑

i=1

[
u + v cos

(
2πm

N
i

)] (
Sx

i Sx
i+1

+Sy
i Sy

i+1

)− hSz
i , (3)

where u is a uniform coupling and v is the amplitude of
the periodic coupling.

The spin operators Si act on a two dimensional space
ηi = C2 where we take the eigenstates of S3 as a base.
The total third component of the spin,

Sz =
N∑

i=1

Sz
i , (4)

is a conserved quantity that can be used to describe the
states of the system.

The first task is to transform the Hamiltonian (3) into
a fermionic Hamiltonian by means of the Jordan-Wigner
transformation [17]. This is achieved by first defining the
fermionic operators:

al = K(l)S−
l , (5)

a†
l = K(l)S+

l , (6)

where S±
l = (Sx

l ± iSy
l ), and

K (l) = exp

⎛

⎝iπ

l−1∑

j=1

S+
j S−

j

⎞

⎠ =
l−1∏

j=1

(−2Sz
j

)
. (7)

The new Hamiltonian and the conserved spin compo-
nent Sz become,

H = −
N∑

n=1

{[
u + v cos

(
2π

a
n

)]
1
2

(
a†

nan+1

+a†
n+1an

)
− h

(
a†

nan − 1
2
I

)}
(8)

Sz =
N∑

n=1

(
a†

nan − 1
2
I

)
= Nf − N

2
I (9)

I is the unity operator, and Nf =
∑N

n=1

(
a†

nan

)
is the

total fermionic number, which is also conserved.
These a and a† operators are true fermionic operators

in the sense that
{
a†

l , am

}
= δl,m and

{
a†

l , a
†
m

}
= 0 =

{al, am}. Furthermore, since

σz
l = 2a†

l al − 1, (10)

the periodic boundary conditions require that

aN+1 = −a1, a†
N+1 = −a†

1

for states on which Nf is even;

aN+1 = a1, a
†
N+1 = a†

1

for states on which Nf is odd.

The next step is to transform the system to momentum
space by performing a Fourier transformation using new
fermionic operators bj and b†j . These are related to the aj

and a†
j by

bj =
1√
N

N∑

l=1

exp [ik (j) l] al, (11)

al =
1√
N

N∑

j=1

exp [−ik (j) l] bj , (12)
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and hermitian conjugate, where

k(j) =
2π

N

(
j − ε

2

)

with
{

ε = 0 if Nf is odd,
ε = 1 if Nf is even, j = 1, ..., N.

(13)

The new operators bj and b†j destroy or create a fermion
with momentum k(j).

In terms of these operators, the Hamiltonian (8) is

H = −u

N∑

j=1

cos [k (j)] b†jbj

− v

2

N∑

j=1

cos
[
k
(
j +

m

2

)](
eimπ/N b†jbj+m

+ e−imπ/N b†j+mbj

)
− h

⎛

⎝N

2
−

N∑

j=1

b†jbj

⎞

⎠ . (14)

A particular case is the alternating chain that occurs when
m = N/2. In this case, the Hamiltonian is

H = −u

N∑

j=1

cos [k (j)] b†jbj

− iv

N∑

j=1

sin [k(j)] b†jbj+N/2 − h

⎛

⎝N

2
−

N∑

j=1

b†jbj

⎞

⎠ .

(15)

The commutation rule of the Hamiltonian with the b†j op-
erator yields

[H, b†j ] =
{

h − u cos
[
k (j)

]}
b†j

− v

2
cos

[
k
(
j − m

2

)]
eimπ/N b†j−m

− v

2
cos

[
k
(
j +

m

2

)]
e−imπ/Nb†j+m, (16)

therefore, bj gives the hermitian conjugate of this. As we
can see, these commutation rules mix the operators bj and
bj+m. Hence, we can redefine the index of bj in a new form,

bj =bl,s with j = l+sm and l=1, ..., m and s=0, ..., a−1.

The periodic conditions are bl, a = bl, 0, and bl,−1 = bl, a−1.
The sums in the index j will be transformed

N∑

j=1

→
m∑

l=1

a−1∑

s=0

with a =
N

m
, (17)

and the functions k(j)

k(j) = k1(l, s) = k(l) +
2πs

a
. (18)

Hence, the commutation rule (16) takes the form

[H, b†l, s] =
{
h − u cos

[
k1 (l, s)

]}
b†l, s

− v

2
cos

[
k1(l, s) − π

a

]
eiπ/a b†l, s−1

− v

2
cos

[
k1(l, s) +

π

a

]
e−iπ/a b†l, s+1, (19)

that we will write as

[H, b†l, s] =
a−1∑

r=0

cl
r, sb

†
l, r

with

cl
s, s = h − u cos

[
k1(l, s)

]
,

cl
s−1, s = −v

2
cos

[
k1(l, s) − π

a

]
eiπ/a,

cl
s+1, s = −v

2
cos

[
k1(l, s) +

π

a

]
e−iπ/a,

cl
a−1, 0 = −v

2
cos

[
k1(l, 0) − π

a

]
eiπ/a,

cl
0, a−1 = −v

2
cos

[
k1(l, 0) − π

a

]
e−iπ/a, and

cl
r, s = 0 otherwise. (20)

For each l, these equations represent the elements of a
hermitian a × a matrix that we write as

Cl = {cl
r, s}. (21)

The eigenvalues of the these matrices yield the energy
spectrum of the system.

The case m = N/2 does not follow from (20) and must
be calculated directly from the commutation relation with
a = 2. The results for the elements of Cl are

cl
0, 0 = h − u cos

[
k(l)

]
,

cl
1, 1 = h + u cos

[
k(l)

]
,

cl
0, 1 = −iv sin

[
k(l)

]
. (22)

The Hamiltonian is diagonalized using the operators

B†
l, p =

a−1∑

s=0

sl
p, sb

†
l, s. (23)

These are defined by the solutions of the eigenvalue
equation

[H, B†
l, p] = Ep

l B†
l, p. (24)

The eigenvalues El
p are the eigenvalues of the matrix Cl.

Hence, the Hamiltonian becomes

H =
a−1∑

p=0

m∑

l=1

Ep
l B†

l, pBl, p − 1
2
hN. (25)

Thus, the spectrum of this Hamiltonian is grouped into
a bands, each of which has m = N/a levels. In the ther-
modynamic limit, keeping a fixed and finite, the sums over
the index l become integrals.
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Fig. 1. Energy of the two levels E0 and E1 for u = 1 and
v = 0.5.
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Fig. 2. Energy difference between the two levels E0 and E1.

3 Solutions for a = 2 and 3

Case a = 2:

For a = 2, the eigenvalues of Cl are

E0
l = h −

√
v2 + (u2 − v2) cos[k(l)]2,

E1
l = h +

√
v2 + (u2 − v2) cos[k(l)]2. (26)

The parameter l takes the values 1 ≤ l ≤ N/2; hence,
when N → ∞, 0 ≤ k[l] ≤ π. Every value of the energy is
doubly degenerate: Ei

l = Ei
N/2−l. In Figure 1 the energy

of the two bands for the values h = 0, u = 1 and v = 0.5 is
shown. For h = 0, the lower band has E0 ∈ [−u, −v], while
the upper band has E1 ∈ [v, u]. The difference in energy
between the two bands is 2 min{u, v}. When u = v both
energies are independent of l and every band collapses into
a single level with values E0/1 = ∓u.

Figure 2 shows the difference,

∆E = E1
l − E0

l = 2
√

u2 cos2 k(l) + v2 sin2 k(l).

The minimum of ∆E represents difference in energy be-
tween the lower and upper bands.
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Fig. 3. Energy of the three bands E0, E1 and E2 for the values
u = 1, and v = 0.1, 0.5, 1.0, and 1.5 plotted as a function
of k(l).
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Fig. 4. Energy band widths W (E0) = W (E2) and W (E1).

Case a = 3:
In this case, the solutions for the eigenvalues of the Cl

are

E0
l =

1
48

( v(2)

f (2)
− f (2)

)
,

E1
l =

1
96

(
(−1 + i

√
3)

v(2)

f (2)
+ (1 + i

√
3)f (2)

)
,

E2
l =

1
96

(
(−1 − i

√
3)

v(2)

f (2)
+ (1 − i

√
3)f (2)

)
. (27)

where

f (1) =
(
27648− 20736 v2 + 6912 v3

)
cos[3 k(l)],

v(2) = −576− 288 v2,

f (2) =
(

1
2

(
f (1) +

√
f (1)2 + 4 v(2)3

)) 1
3

. (28)

These coefficients are real.
In Figure 3, the energy levels of the three bands E0,

E1, and E2 (27) are plotted as a function of k(l) for four
different values of v. The positions are marked on the
x-axis where k(l) is, for l in the interval [1, N/3].

The width of the bands are shown in Figure 4. They
are given by the expressions

W (E0) =
W (E1)

2
= W (E2)

=

⎧
⎨

⎩
−1 − v +

√
9 − 6v + 3v2

4 if v > 0
1 + v

2 if v < 0.
(29)
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Fig. 5. Energy difference for three bands ∆E = min |E1 −
E0| = min |E2 − E1|.

It can be seen from Figure 4 that with increasing v, the
width of each band increases when v is negative and de-
creases when v is positive. The width is zero for v = −1
and 2, meaning that at these two values each band degen-
erates into a single level.

More generally, for an arbitrary value of a, the bands
degenerate into single levels when v and u satisfy the
condition

v

u
= − 1

cos
(

2πj
a

) , j = 1, ..., a. (30)

When this happens, the chain splits into a number of non-
interacting parts. For example, j = 3 yields the solution
v = −1, and the chain is split into noninteracting subsys-
tems with three sites each. If j = 1 or 2, then v = 2 and
produces a chain where only the sites in the positions 3k
and 3k + 1 (k = integer) are interacting.

The energy difference for three bands, ∆E =
min |E2

l − E1
l′ | = min |E1

l′′ − E0
l′′′ |, is given by

∆E =

∣∣∣∣∣
3 + 3v −√

9 − 6v + 3v2

4

∣∣∣∣∣ (31)

∆E over the interval v = −1 to 2 is shown in Figure 5. At
fixed u = 1 and large v, ∆E is proportional to v:

∆Eu=1, v�2 = Gv, (32)

where the constant of proportionality

G =
3 − √

3
4

. (33)

Case a > 3:
Larger values of a are straightforward to deal with.

Numerical results for the energy bands with a = 12, u =
10 and v = 3 are shown in Figure 6.

As follows from (30), that the bands can degenerate
into a single level only when |v/u| ≥ 1. If we consider only
v = ±u, then both cases satisfy this condition when a is
even. However, if a is odd, this is true only for v = −u. In
all cases that satisfy the degeneracy condition, the chain
is split into noninteracting subsystems containing a sites.
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Fig. 6. Energy bands for u = 10, v = 3 and a = 12.

4 Thermodynamic functions

The partition function is defined by

Z = tr e−βH

=
∑

|est〉
e βhN/2〈est| exp

(
−∑

p, l E
p
l B†

l, p Bl, p

)
|est〉

(34)

with β = 1/T , and T being the temperature.
The most general state of the chain can be written

as a tensorial product of the states of the sites which,
in momentum space, are labelled by {l, p}. The state of
every site, determined by the ket |o〉l, p, can be occupied
or empty:

|est〉 = Πl, p|o〉l, p,

with o = 1, (occupied) o = 0, (empty). (35)

Then, the trace is,

∑

|est〉
〈est| exp

(
−β

∑
p, l E

p
l B†

l, p Bl, p

)
|est〉 =

∏

l, p

[
〈0| exp

(
−βEp

l B†
l, p Bl, p

)
|0〉

+〈1| exp
(
βEp

l B†
l, p Bl, p

)
|1〉

]
. (36)

Due to the boundary conditions, the function k(l) in Ep
l ,

in the product over l, p, is different when the number of
occupied sites Nf in |est〉 is odd or even. However, when
N → ∞ the difference becomes negligible [30,16], and

Z = e βhN/2
∏

l, p

[1 + exp (−βEp
l )] . (37)

This expression takes ε = 0 in k(j) from (13) use it for Ep
l .

The thermodynamic free energy per site f can be de-
rived from the partition function as follows.

f = − 1
βN

ln Z

= −h

2
− 1

βN

∑

l, p

ln [1 + exp (−βEp
l )] . (38)
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The thermodynamic limit is obtained by making N → ∞
and keeping a fixed and finite, whereupon the sums be-
come integrals:

1
N

∑

l, p

→ 1
2π

a−1∑

p=0

∫ 2π/a

0

dk. (39)

When a = 2 the free energy can be calculated analytically.
To perform the integrals for this case, we first change the
site parameter l and define

El = E0
l = h − λ(l)

for − N

4
+ 1 ≤ l ≤ N

4
,

El = E1
l = h + λ(l)

for − N

2
+ 1 ≤ l ≤ −N

4
and

N

4
+ 1 ≤ l ≤ N

2
,

(40)

where

λ(l) =
√

u2 cos2(k(l)) + v2 sin2(k(l))

=
√

v2 + (u2 − v2) cos2(k(l)). (41)

Then, taking into account that El is an even function of l,
the free energy in the continuum limit is

f = −h

2
− 1

πβ

(∫ π/2

0

ln
(
1 + e−β(h−λ(k))

)
dk

+
∫ π

π/2

ln
(
1 + e−β(h+λ(k))

)
dk

)
. (42)

Integrating by parts yields

f = −h

2
− 1

β

(
1
2

ln
1 + e−β(h−v)

1 + e−β(h+v)

+ ln
(
1 + e−β(h+u)

))
− 1

π
(I1 + I2) , (43)

where

I1 =
∫ u

v

arccos

(
−
√

λ2 − v2

u2 − v2

)
e−β(h+λ)

1 + e−β(h+λ)
dλ, (44)

and

I2 =
∫ −v

−u

arccos

(√
λ2 − v2

u2 − v2

)
e−β(h+λ)

1 + e−β(h+λ)
dλ. (45)

Both integrals can be performed by standard methods:
see for example the appendix in reference [31]. Here, the
function arccos is expanded as a series and integrated term
by term. In the I1 integral, we must considerer the cases
v > −h and v < −h. For I2, the corresponding cases are
v > h and v < h. Then, I1 in the first case is

I1 = T

(
π

2
ln
(
1 + e−ξ

)
+
∑

n=0

T (n+ 1
2 )a1,1 (n) i1,1 (n)

)
,

(46)

where

a1,1(0) =
√

2v√
u2 − v2

,

a1,1(1) =
3u2 + v2

6
√

2v(u2 − v2)3
,

a1,1(2) =
−5u4 + 50u2v2 + 3v4

80
√

2v3(u2 − v2)5
,

a1,1(3) =
7u6 + 7u4v2 + 301u2v4 + 5v6

448
√

2v5(u2 − v2)7
, (47)

and

i1,1(n) =
∫ u−v

T
=∞

0

x(n+ 1
2 )

1 + ex+ξ
dx

= −Γ

(
3
2

+ n

)
PolyLog

(
3
2

+ n,−e−ξ

)
, (48)

with ξ = (h + v)/T .
The expression for I1 when v < −h is more compli-

cated. Following references [32,33], this can be written as
follows.

I1 = |h| arccos

(
−
√

h2 − v2

u2 − v2

)
− π

2
v

− u E

[
arcsin

(
u

h

√
h2 − v2

u2 − v2

)
, 1 − v2

u2

]

+

√
(u2 − h2)(h2 − v2)

|h| +
∑

n=0

T n+1 [1

− (−1)n] a1,2(n) i1,2(n), (49)

where

a1,2(1) = − h√
(u2 − h2)(h2 − v2)

,

a1,2(3) =

− h[2h6 − 10h2u2v2 + h4(u2 + v2) + 3u2v2(u2 + v2)]
6
√

(u2 − h2)5(h2 − v2)5
,

(50)

and

i1,2(n) =
∫ ∞

0

xn

1 + ex
dx

=
2n − 1

2n
Γ (n + 1) ζ(n + 1). (51)

The first three elements of (51) are

i1,2(1) =
π2

12
, i1,2(3) =

7π4

120
, i1,2(5) =

31π6

252
.

(52)
Once again, |u − h|/T and |h − v|/T are assumed to be
large.
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Fig. 7. Free energy plotted using u = 1 and v = 0.0, 0.25, 0.5, 0.75, 1.

The I2 integral when h < v can also be performed us-
ing the tables provided in references [32,33], and a similar
expansion to before. The result is

I2 = (u − v) + u E

(√
1 − v2

u2

)

− T
π

2
ln
(
1 + e(h−v)/T

)
− T

∑

n=0

T n+ 1
2 a2,1 (n) i2,1 (n) ,

(53)

where a2,1(n) = −a1,1(n) from (47), and i2,1(n) = i1,1(n)
from (48), with ξ = (v − h)/T .

The result for integral I2 when h > v is

I2 = h arccos

(√
h2 − v2

u2 − v2

)

+ u E

[
arccos

(√
h2 − v2

u2 − v2

)
,

√
1 − v2

u2

]

+
∑

n=0

T n+1 [1 − (−1)n] a2,2(n) i2,2(n),

where a2,2(n) = −a1,2(n) from (50), and i2,2 = i1,2

from (51).
The free energy is obtained by substituting I1 and I2

into (43). Several examples are plotted in Figure 7 for
different values of T and v, and for u = 1, as functions
of h. These show that, as implied by the Hamiltonian (3),
the free energy is an even function of h. This property is
also shown explicitly by an alternative expression to (42)
for the free energy:

f = −T

π

∫ π
2

0

ln
(

2 cosh
h

T
+ 2 cosh

λ(k)
T

)
dk. (54)

Notice that at low T , f becomes nearly constant be-
tween −v and v.

The entropy per site is defined by

s = − ∂f

∂T
. (55)

This can be obtained exactly from the expression for the
free energy. To examine its behaviour we evaluate the par-
tial derivative as follows.

s =
1
π

[∫ π
2

0

w

(
h − λ(x)

T

)
dx

+
∫ π

π
2

w

(
h + λ(x)

T

)
dx

]
, (56)

where the function w(x) is

w(x) = ln
(
1 + e−x

)
+

xe−x

1 + e−x
. (57)

This is an even function. Its magnitude is significant only
when x is small: (w(5) = 0.04, w(10) = 0.0004). For large
values of |x|, the expression simplifies to

w(x) = |x|e−|x|. (58)

The integral can be evaluated in a similar manner to the
one for the free energy. However, in this case the properties
of the function w allow us to examine the behaviour of s
in the low temperature limit. When |h| < v, the integrand
in (56) can be approximated by (58). Taking the most
significant term, yields the following solution.

s (h, T )T→0 ≈ 1
π

e−(v−|h|)/T → 0. (59)

A similar approximation can be made for |h| > u:

s (h, T )T→0 ≈ 1
π

e−(|h|−u)/T → 0. (60)
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To evaluate (56) for other values of h, we change the in-
tegration variable to

y =
h − λ(x)

T
, and y =

h + λ(x)
T

(61)

respectively, in the two integrals. Hence, the entropy is

s =
1
π

(∫ (h−v)/T

(h−u)/T

w(y)

× T (h− Ty)√
[u2 − (h − Ty)2][(h − Ty)2 − v2]

dy

+
∫ (h+u)/T

(h+v)/T

w(y)

× T (Ty − h)√
[u2 − (h − Ty)2][(h − Ty)2 − v2]

dy

)
. (62)

This integral has local maxima at |h| = v, where it can be
approximated by

s(|h| = v) =
1
π

√
Tv

2(u2 − v2)

∫ ∞

0

w(y)√
y

dy

= 0.6475

√
Tv

2(u2 − v2)
. (63)

A similar approximation can be made when |h| = u, where
there is also a local maximum.

s(|h| = u) = 0.6475

√
Tu

2(u2 − v2)
. (64)

When v < |h| < u — taking into account that w(x) has
significant values around x ≈ 0, and is rapidly decreasing

otherwise — s can be approximated by

s =
1
π

T |h|√
(u2 − h2)((h2 − v2)

∫ ∞

−∞
w(y) dy

=
πT |h|

3
√

(u2 − h2)(h2 − v2)
. (65)

Here, we can use

1
π

∫ ∞

0

w(x)√
x

dx = 0.6475,
1
π

∫ ∞

−∞
w(x) dx =

π

3
.

(66)
Thus, combining all of the above, the entropy is

s(h, T )T→0 =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
π e−(v−|h|)/T → 0 if |h| < v

0.6475
√

Tv
2(u2 − v2)

if |h| = v

πT |h|
3
√

(u2 − h2)(h2 − v2)
if u > |h| > v

0.6475
√

Tu
2(u2 − v2)

if |h| = u

1
π e−(|h|−u)/T → 0 if |h| > u.

(67)

The entropy is plotted using four different values of v,
each at three different temperatures in Figure 8. Figure 9
shows logarithmic graphs of the temperature dependence
of the entropy when u = 1 and v = 0.5, for five values of
values h.
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Fig. 9. Graphs of ln S versus ln T plotted using u = 1 and v = 0.5, for five values of h. Left: h = 1, 0.75, 0.5; and right:
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The specific heat per site is

C(h, T )T→0 = T
∂s

∂T

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
v − |h|

T

)
e−(v−|h|)/T if |h| < v

0.3238
√

Tv
2(u2 − v2)

if |h| = v

πT |h|
3
√

(u2 − h2)(h2 − v2)
if |h| > v

0.3238
√

Tu
2(u2 − v2)

if |h| = v

|h| − u
T e−(|h|−u)/T if |h| > u.

(68)

It can be seen that both functions (the entropy and the
specific heat) decay exponentally as e−1/T to zero when
T → 0, for |h| < v and |h| > u. This also shows that the
internal parameters of the system, v and u, can be derived
by measuring the specific heat as a function of h.

Conclusions for other values of periodicity a can be
generalised from this result. The specific heat will be ex-
ponentially small for values of h between the several en-
ergy bands. Thus, measurements will provide information
about the periodicity and its amplitude.
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